
Physics H7C Fall 1999 Solutions to Problem Set 5 Derek Kimball

“Guys, don’t worry about midterms. They’re not the best measure of your worth
as a physicist. In fact, I did rather poorly on my first physics midterm, I got
something like 3 out of 40. Of course, everyone else got 1 out of 40, but that’s not
really the point...”

- Prof. Nima Arkani-Hamed, UC Berkeley

If you have any questions, suggestions or corrections to the solutions, don’t hesitate
to e-mail me at dfk@uclink4.berkeley.edu!

Problem 1

(a)

Boundary conditions at the interface (y = 0) between Region 1 and Region 2 imply
there will be EM waves propagating in the x̂-direction in both regions. Without
knowing their polarizations just yet, let the electric fields of the waves be given
by:

E1e
i(k1x−ωt)

E2e
i(k2x−ωt). (1)

At the interface between Region 1 and Region 2, since the electric and magnetic
field amplitudes in both regions are independent of x and t, the only way to satisfy
boundary conditions at all positions and times is if:

ei(k1x−ωt) = ei(k2x−ωt) (2)

For example, at t = 0, this requires that:

k1 = k2 (3)

which means the indices of refraction in the two regions must be the same. Thus
we have,

√
ε1µ1

ε0µ0
=

√
ε2µ2

ε0µ0
(4)

which gives us µ2 = 4µ0.

(b)

We have the following boundary conditions at the interface:

ε1E
(1)
⊥ = ε2E

(2)
⊥

µ1H
(1)
⊥ = µ2H

(2)
⊥

E
(1)
‖ = E

(2)
‖

H
(1)
‖ = H

(2)
‖ (5)

First let’s see if �E can be along ŷ. In this case, from Eqs. (5), we have that:

ε1E
(1)
y = ε2E

(2)
y ⇒

4E(1)
y = E(2)

y (6)

and we also know that for the wave in Region 1:

H(1)
z =

√
ε1
µ1

E(1)
y ⇒

H(1)
z = 2

√
ε0
µ0

E(1)
y , (7)

and for the wave in Region 2:

H(2)
z =

√
ε2
µ2

E(2)
y ⇒

H(2)
z =

1
2

√
ε0
µ0

E(2)
y = 2

√
ε0
µ0

E(1)
y (8)

We see that these relations verify that H(1)
z = H

(2)
z as demanded by the boundary

conditions in Eqs. (5). The relations are consistent, so therefore such a polarization
is allowed.

Can �E be along ẑ? We have from Eqs. (5) that

E(1)
z = E(2)

z (9)

For the wave in Region 1:

H(1)
y =

√
ε1
µ1

E(1)
y ⇒

H(1)
y = 2

√
ε0
µ0

E(1)
z . (10)

September 30, 1999



Physics H7C Fall 1999 Solutions to Problem Set 5 Derek Kimball

In Region 2:

H(2)
y =

√
ε2
µ2

E(2)
y ⇒

H(2)
y =

1
2

√
ε0
µ0

E(1)
y . (11)

We see that this verifies the boundary condition on Hy from Eqs. (5):

µ1H
(1)
y = 2

√
ε0µ0E

(1)
y =

µ2H
(2)
y = 2

√
ε0µ0E

(1)
z . (12)

So in fact the wave can be in either polarization state.

Problem 2

Reflection at the Brewster angle transmits all TM light and reflects part of the TE
light. The degree of polarization P (for linear polarized light) is given by Fowles
Eq. (2.27):

P =
Imax − Imin

Imax + Imin
(13)

TM+TE TE′

TM+TE′′

θ = θB

φ

Figure 1

The light is initially unpolar-
ized, so it is 50% TE and
50% TM. The light transmit-
ted has reduced TE intensity
(since some is reflected at the
interface), but the TM inten-
sity remains the same. Conse-
quently, the transmitted light
is partially polarized:

P =
ITM − ITE′′

ITM + ITE′′
=

ITE′

ITM + ITE′′
.

(14)

Now we can apply the Fowles
formalism for reflection and

transmission of TM and TE waves, using the definitions on page 43 of Fowles:

rs =
[
E′

E

]
TE

ts =
[
E′′

E

]
TE

rp =
[
E′

E

]
TM

tp =
[
E′′

E

]
TM

(15)

From the boundary conditions for E and H at the interface (Eqs. (5)), we find
some basic relations between the quantities in Eqs. (15):

ts = rs + 1
ntp + rp = 1 (16)

At the Brewster angle rp = 0, so tp = 1/n. Employing the fact that I ∝ nE2

(thanks to Paul Wright!), we have for the partial polarization:

P =
1
n

r2
s

t2s + t2p
=

1
n

(ts − 1)2

t2s + 1/n2
(17)

Fowles works out the general formulae (Fresnel’s equations) for reflec-
tion/refraction at a plane interface, and in particular for ts we have from Fowles
(2.56):

ts =
2 cos θ sinφ
sin (θ + φ)

. (18)

If we combine Fowles Eq. (2.64)

tan θB = n (19)

with Snell’s Law

n =
sin θ
sinφ

, (20)

we have the Brewster condition:

θ + φ = π/2, (21)
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which follows from the fact that sinφ = cos θ. Knowing also then from Eq. (21)
that sin (θ + φ) = 1, we find that:

ts = 2 cos2 θ (22)

Using the trigonometric identity sec2 = tan2 +1 and Eq. (19) we find that cos2 θ =
1/(n2 + 1) so

ts =
2

n2 + 1
(23)

Plugging Eq. (23) into Eq. (17), with a little algebra, gives us:

P =
n[(n2 − 1)]2

1 + 6n2 + n4
. (24)

For glass, where n = 1.5, we have that P ≈ 12%.

Problem 3

(a)

Note that the Brewster condition (Eq. (21)) is met. Thus from Eq. (19) we have
that n = tan 60o =

√
3. Since µ = µ0, we find that ε = 3ε0.

(b)

Since the Brewster condition is met, the reflected light is 100% TE. Therefore
reflected light is linearly polarized along ŷ.

(c)

The light is initially circularly polarized, so it is an equal superposition of linear
polarizations (TE and TM). Since the TM component has 100% transmission, it
suffices to consider the transverse electric case ( �E along ŷ) where all reflection
occurs. We have the boundary condition that E‖ is continuous, so

Ei + Er = Et. (25)

Also H‖ is continuous, and we have for the incident, reflected and transmitted
waves the following components of H in the x̂ direction:

H(i)
x = −Ei

√
ε0
µ0

cos 60o

H(r)
x = Er

√
ε0
µ0

cos 60o

H(t)
x = −Et

√
3ε0
µ0

cos 30o (26)

From which we have the condition:

−Ei + Er = −3Et. (27)

Adding Eq. (25) to Eq. (27) gives us (Er/Ei = 1/2)TE , or (Ir/Ii = 1/4)TE . The
intensity in the TE component is half the initial intensity, so in total Ir/Ii = 1/8.

Problem 4

Here we treat the tungsten filament as a relatively long straight wire of thickness
s = 0.1 mm. The distance between the filament and an aperture is r. We want
a transverse coherence width lt ≥ 1 mm. Then from Fowles Section 3.7, and in
particular Eq. (3.42), we find that:

lt =
rλ

s
≥ 1mm (28)

If we assume that the tungsten lamp has a central wavelength of 5000 Å, then Eq.
(28) demands that r ≥ 200 mm.

If a double-slit aperture is used, the slits should be oriented parallel to the lamp
filament, otherwise the thickness of the wire s would have to be replaced with the
length of the wire, which is naturally much greater than s. This would force r to
be much greater.

Problem 5

The power spectrum of the Gaussian pulse f(t) is given by G(ω) = |g(ω)|2, where
in our case g(ω) is:

g(ω) =
A√
2π

∫ ∞

−∞
dt exp

(−at2 + i(ω − ω0)t
)

(29)

It is first useful to derive a result about Gaussian integrals. It turns out that∫ ∞
−∞ e−ax2

dx converges, so let’s set it equal to some constant c. Now consider the
integral over the entire plane:

∫ ∞

−∞
e−ax2

dx

∫ ∞

−∞
e−ay2

dy = c2. (30)

Next we convert the integral into polar coordinates (r2 = x2 + y2).
∫ ∞

0

e−ar2
rdr

∫ 2π

0

dφ = c2. (31)
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Which is relatively straightforward with the substitution u = ar2, du = 2ardr.
From this integral we find that c2 = π/a.

Thus all we need to do is to convert the integral in Eq. (29) to a form resembling
a Gaussian. This can be done by completing the square in the exponent:

−at2 + i(ω − ω0)t = −a
[(

t2 − 2i
ω − ω0

2a
t− (ω − ω0)2

4a2

)
+

(ω − ω0)2

4a2

]

= −a
(
t− i

ω − ω0

2a

)2

− (ω − ω0)2

4a
(32)

Now the integral in Eq. (29) is just a Gaussian integral, which is no longer a
problem...

Working through the constants gives us:

g(ω) =
A√
2a

exp
[
− (ω − ω0)2

4a

]
. (33)

G(ω) = |g(ω)|2 is clearly of the same form, and so G(ω) is a Gaussian function
centered at ω0.

Problem 6

The condition for a fringe maximum to occur is given by Fowles Eq. (4.10):

2Nπ =
4π
λ
nd cos θ + δr. (34)

Use the small angle approximation:

2Nπ =
4π
λ
nd

(
1 − θ2

2

)
+ δr. (35)

We are told that the zeroth order fringe (N = 0) has zero radius (∴ θ = 0), so we
have:

δr = −4π
λ
nd (36)

and subsequently:

2Nπ =
4π
λ
nd

θ2

2
. (37)

So θ ∝ √
N . Since the radius of the fringes r is proportional to θ, it follows

immediately that r ∝ √
N .

Problem 7

This solution follows directly from the discussion of antireflecting films in Fowles
(page 99). We want to choose the thickness of the film to be λ

4 . Then the reflectance

is zero if the index of refraction of the coating n =
√

ε
ε0

.

Problem 8

Fowles Eq. (4.24) states:[
1
n0

]
+

[
1

−n0

]
r = M

[
1
nT

]
t (38)

which is equivalent to:[
1
n0

]
E0 +

[
1

−n0

]
E′

0 = M

[
1
nT

]
ET (39)

The total E and H just to the right of the right-hand interface are:

ERH = ET

HRH = nTET . (40)

The total E and H just to the left of the left-hand interface are:

ELH = E0 + E′
0

HLH = n0E0 − n0E
′
0. (41)

When the relations in Eqs. (40) and (41) are substituted into Eq. (39), we find
that: [

ELH

HLH

]
= M

[
ERH

HRH

]
(42)

Therefore the overall transfer matrix Mtot is merely the product of transfer matri-
ces for the individual films Mi. This follows from induction. Suppose there are n
films with transfer matrices M1,M2, ...,Mn. Let the fields to the right of the last
film be En and Hn. The fields just to the left of the nth film are:[

En−1

Hn−1

]
= Mn

[
En

Hn

]
(43)
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the fields just to the left of the (n-1)th film are:
[

En−2

Hn−2

]
= Mn−1

[
En−1

Hn−1

]
= Mn−1Mn

[
En

Hn

]
(44)

and so on...

This argument leads to Fowles Eq. (4.28) as stated.
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